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ABSTRACT

Transaction processing over the network is usually only limited by latency, since typical workloads
do not saturate the network bandwidth, but need to transmit many small messages as fast as
possible. Since conventional systems are not sufficiently optimized for low latency operations,
in this thesis we designed a messaging library, which effectively transmits transactions over
network interfaces with latencies as low as possible.

As a key component, we use user-space remote direct memory access (RDMA) over Infiniband,
because its latencies are roughly ten times lower than kernel based networking. Instead of using
RDMA send and receive primitives, we implemented an optimized messaging library, which
directly writes into remote message buffers. This approach reduces overhead and allows to
efficiently check for new incoming messages with optimized polling routines.

Using our library, we achieve round trip times as low as 2.5 µs, which is over 30 % lower than
using send and receive and a 13 fold increase in sequential transaction throughput compared
to standard TCP. In comparison to competing state of the art RDMA transaction processing
systems, our library achieves a 0.5 µs or 18 % lower round trip time on similar hardware, while
still providing reliable message delivery. Based on our work, new, high performance distributed
transaction processing systems can be implemented.





ZUSAMMENFASSUNG

Das größte Problem für netzwerkbasierte Transaktionsverarbeitung sind Netzwerklatenzen. Die
Ursache dafür ist, das bei derartigen Anwendungsfällen nicht die gesamte Netzwerk Bandbreite
ausgenutzt werden kann, sondern das Ziel ist, viele kleine Nachrichten möglich schnell zu
verschicken. Nachdem herkömmliche Systeme nicht ausreichend auf geringe Latenzen optimiert
sind, haben wir im Rahmen dieser Arbeit eine Programmbibliothek entworfen, die es erlaubt
Transaktionen mit kürzest möglichen Umlaufzeiten zu übermitteln.

Als zentrale Komponente verwenden wir User-Mode RDMA über ein Infiniband-Netzwerk, da
die damit einhergehenden Latenzen ca. zehnmal geringer sind, als Netzwerkkommunikation
über den Kernel. Auf Basis dessen haben wir eine speziell optimierte nachrichtenbasierte
Kommunikation implementiert, die direkt in die Netzwerkpuffer des Kommunikationspartner
schreibt, statt RDMA Send- und Receive-Primitiven zu verwenden. Dieser Ansatz hat deutlich
weniger Overhead und erlaubt es, eingehende Nachrichten mit speziell optimierten Routinen zu
detektieren.

Mit unserer Implementierung erreichen wir Paketumlaufzeiten von 2.5 µs, was ca. 30 % schnel-
ler ist als die Verwendung von Standard RDMA-Nachrichten und verglichen mit TCP einem
ca. 13 mal so hohen sequentiellen Durchsatz entspricht. Im Vergleich zu ähnlichen Trans-
aktionsverarbeitungssystemen, die RDMA verwenden, hat unser System ca. 0.5 µs geringere
Paketumlaufzeiten auf vergleichbarer Hardware, ohne die Zuverlässigkeit der Nachrichtenüber-
mittlung zu beeinträchtigen. Aufbauend auf unserer Arbeit können hochperformante, verteilte
Transaktionsverarbeitungssysteme implementiert werden.
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CHAPTER 1

INTRODUCTION

By eliminating traditional bottlenecks piece by piece, modern in-memory databases
are getting fast [11]: In-memory data structures can easily process multiple million
reads and writes per second [12], which is mainly caused by the ability to fit large
datasets completely into main memory, where traditional database systems need to
store their data on disk. Random accesses on hard drives can quickly take several
milliseconds, which caused physical storage to be the major bottleneck. Now, storage
is getting increasingly faster, with solid state drives (SSDs) and non-volatile memory
(NVM) becoming available throughout the industry.

The many eliminated bottlenecks on local databases shift the responsibility towards
interconnecting multiple systems. Databases are often run in a networked cluster, either
to guarantee high availability through redundancy or because of sheer data size, which
does not fit a single machine. Compared to single node systems, operations over the net-
work are slow, because faster networks were neglected, while other bottlenecks where
a priority. Raw bandwidth of networks can usually be scaled reasonably well, e.g. using
link aggregation or more expensive network equipment, but high-speed TCP operations
are usually CPU bound, as receivers become computationally overloaded [19].

For distributed online transaction processing (OLTP) systems, high network latencies
thrash performance, since subsequent operations are often dependent on previous
ones. Although network bandwidth is limited, raw serialization times of messages only
make up a minor fraction of the total latency, because the size of each transaction is
usually small. Most of the latency is actually processing overhead, which caused many
researchers to focus on avoiding network traffic altogether. Networks supporting RDMA
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reduce this overhead instead, which significantly reduces overall latency and allows
systems to scale better.

In this work, we will take a look on how to optimize latencies for networked transactions.
We will also answer the question, how an implementation for best low-latency transaction
processing over RDMA networks should be designed.

METHODOLOGY

To answer these questions, we designed a high-performance system with the available
tools for RDMA communication. Since software supporting RDMA is already available,
we first analyzed the current implementations and reasoned about their effectiveness.
Additionally, we constantly measured the different approaches and categorized their
usefulness. From the best approaches we then created our own implementation,
which fits transaction processing best. Afterwards we evaluated it using transactional
workloads and suggest more applications of similar techniques.
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CHAPTER 2

NETWORKING AND REMOTE DIRECT MEMORY

ACCESS (RDMA)

When running databases on multiple machines, we need a way to coordinate the
individual nodes. This is fundamentally different to running multiple processes on a
single machine, since distributed systems cannot directly access other system’s memory.
Instead, distributed systems use network interface cards (NICs) to send messages via a
network.

The traditional way to communicate between systems is to use the socket API, which de-
fines a set of network agnostic operations to send data to other processes or machines.
The socket API defines several types of sockets, which implement different semantics:
Unreliable, unordered, and message based data transmission using SOCK_DGRAM and
reliable, ordered, and transmitting a stream of data using SOCK_STREAM. Reliable con-
nections are the go-to solution for databases, because they typically are built to store
data consistently. Out of band detection for lost or corrupted unreliable messages adds
complexity, which increases overhead and latency.

Stream oriented transports are suitable for transmitting big messages, but unsuited
for low latency messages. To reduce message header overhead, the network layer
batches small chunks data to be transmitted together. This behaviour actually adds
unnecessary latency for transaction processing. The SOCK_SEQPACKET socket type with
reliable message semantics would be the best fit in the socket API, but is not widely
available. Similar semantics can be implemented with stream sockets, using features of
the underlying transmission control protocol (TCP), but this turns sockets into a “leaky
abstraction”.
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The network layer, on which sockets operate, is usually shared between all processes
on a system, thus every connection must go through the kernel to coordinate access
to the hardware. As a result, in high performance workloads more time is spent on
context switches, than on doing actual work, which causes the network performance to
be slow. Sockets also have a long history of supporting multiple different mechanisms
to solve similar problems, which came up long after the API was created. One of
the most intriguing examples is the difference between select, poll and epoll with
options set via fcntl and setsockopt to achieve non-blocking I/O and handle multiple
connections. Since almost all software actually uses different combinations of these
calls, supporting the full socket API is not a viable solution when only concentrating on
processing transactional workloads.

Systems that emulate the socket API using RDMA are available1, but only support a
subset of all operations and are brittle when used in complex applications. Previous
experiments2 quickly uncovered several limitations regarding the API and had more
problems overcoming them, then with actually creating a performant implementation. In
our work, we decided to abandon the socket interface and implement our own messaging
interface. With this decision, we can focus on making use of proper message semantics
and provide a fitting abstraction for RDMA based messages.

2.1 RDMA WITH INFINIBAND

One of the main aspects of RDMA is to eliminate the system call overhead for network
communication, similar to how shared memory eliminates it for domain socket inter-
process communication (IPC). RDMA requires special NICs, connected to the PCIe bus,
having direct memory access (DMA) to the host system. Using those cards, special
commands can be sent to a remote device, which effectively allows DMA over the
network.

1 E.g. librdmacm’s rsocket https://github.com/linux-rdma/rdma-core
2 https://github.com/pfent/rdma_tests

4
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Device

Context

Protection Domain Completion Queue

Completion Event ChannelMemory Region Shared Receive Queue Queue Pair

FIGURE 2.1: Libibverbs resource hierarchy: The figure shows in which order resources need to be initialized
before messages can be sent.

2.2 LIBIBVERBS

The interface for RDMA are so called verbs, as defined in the RDMA Protocol Verbs
Specification [7]. The userspace library implementing those verbs on Linux is called
libibverbs. This library is the most low-level library for RDMA, allowing access to the raw
performance of RDMA.

In the setup of an RDMA connection, there are several resource interdependencies,
which are displayed in Figure 2.1. The dependencies force programs to call a sequence
of verbs to allocate and create those resources. First, a device needs to be opened
with a call to ibv_open_device(), which provides a usable handle to perform actions
on the device. Next, this context can be used to create a protection domain using
ibv_alloc_pd(), which registers memory regions using ibv_reg_mr().

Memory regions specify the access permissions for RDMA operations, similar to
mprotect() and lock virtual and physical memory, so relocation cannot happen while
the NIC asynchronously accesses those regions. Furthermore, the base resources are
also used to create several queues: A queue pair using ibv_create_qp(), consisting of
a send and a receive queue and corresponding send and receive completion queues
(ibv_create_cq()). The normal queues can be used to trigger network operations using
work requests, whereas the completion queues signal the asynchronous process of
work requests with work completions. The completion queues can either be polled for
events or one can set up an event channel, which supports asynchronous callbacks for
new messages.

As outlined in Table 2.1, RDMA connections usually require separate completion queues,
which might be problematic, if one wants to check multiple connections for received
messages. To natively support this, multiple receive queues can also be replaced by

5
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TABLE 2.1: Libibverbs resource usage: Some resources only need to be acquired once for each device,
others for each connection

Per device A context
Protection domain(s)
Memory region(s)

Per connection Setup information, e.g. via a traditional socket
A queue pair, consisting of:

• exclusive send queue
• (shared) receive queue
• (shared) send completion queue
• (shared) receive completion queue

a shared receive queue (ibv_create_srq()), which can be used as a single point to
receive messages.

Afterwards, the queue pairs can be connected to a remote queue pair, by issuing a
series of calls to ibv_modify_qp(), which transition the queue from reset (RESET) to
initializing (INIT), then to ready to receive (RTR) and finally to ready to send (RTS). In
this process, various parameters for the queue pair need to be configured, but usually
it is acceptable to use the maximum the hardware allows, which can be queried using
ibv_query_device().

2.2.1 WORK REQUESTS

The actual communication over RDMA happens via so called work requests. Those
requests are messages to the NIC, posted to a queue in a queue pair and used to
trigger asynchronous processing of the requested work.

A basic, simplified structure of a work request is shown in the listing below. Only fields
which are relevant for memory access operations are shown. Actual work requests are
more involved, since there are manifold types of work requests.

6
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remote_addr
local remote

sg_list[0] sg_list[1]

FIGURE 2.2: Scatter / gather operations: Multiple entries in sg_list allow to selectively modify memory,
while leaving intermediate values unchanged.

LISTING 2.1: Simplified work request structure

1 struct ibv_send_wr {
2 uint64_t wr_id; // Identifier
3 struct ibv_send_wr *next; // List of work requests posted together
4 struct ibv_sge *sg_list; // Array of fragments of local memory
5 int num_sge; // Size of that array
6 enum ibv_wr_opcode opcode; // Type of the work request
7 unsigned int send_flags; // Flags , altering behaviour
8 uint32_t imm_data; // Only valid for *_WITH_IMM work requests
9 struct { // Actually a union , but for clearness , only the active part is shown

10 uint64_t remote_addr; // Target remote address
11 uint32_t rkey; // Identifier of the remote memory region
12 } rdma;
13 // Additional members omitted
14 };

The work request structure consists of multiple fields: The wr_id of the work request
identifies it locally, i.e. a work completion also contains this id. Work requests can also
be chained to a linked list via the next pointer with a terminating nullptr. Multiple
different fragments of memory can also be combined in a single work request as scatter
/ gather entries in the sg_list. The name is a bit confusing, since this member is not
actually a list, but a pointer to an array with num_sge entries. The first entry in this list
specifies the base local address, which corresponds to the specified remote memory.
Subsequent entries then operate with an offset on the remote, which is equal to the
offset to the first entry (cf. Figure 2.2). This effectively allows operations with holes.
opcode specifies the type of work request, which the structure contains. send_flags

specify optional flags, which influence the local processing of the work request.

The actual data to be sent is contained in imm_data (for types *_WITH_IMM) and the
following rdma data structure. Different types of work requests have different active
fields in a union (line 9), but for the sake of brevity we only look at one instance. In our
case, remote_addr identifies the memory location of the remote system, this work item
operates on, and rkey identifies the RDMA memory region this address belongs to. This
mapping is needed, because virtual memory addresses are not necessarily unique and
multiple processes could have the same address registered with libibverbs. The length

7
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of data manipulated in the remote memory is implicitly defined as the sum of individual
lengths in the sg_list.

The opcode field specifies, which type of work request the structure contains. The types
can be classified into two basic classes of work requests corresponding to the initiating
system: outgoing and incoming. Outgoing work requests are rather diverse with read,
write, send, and atomic work requests, while the only incoming operations are receive
requests. Please note, that send work requests have slightly confusing names: The
ibv_send_wr structure can contain all possible types of outgoing work requests, while a
send work requests is one specific type, consisting of a ibv_send_wr with opcode send.

Read requests are a special case, since the flow of data is actually reversed. Read
work requests specify a remote address to read from and a local address, where
the read data is then put into. When the read has been finished, the NIC generates
a work completion in the send completion queue and the initiator can use the data.
The following listing shows a simplified code fragment to read data from remote
memory via an RDMA read.

LISTING 2.2: Usage example of an RDMA read

1 ibv_sge local_addr = {
2 .addr = 0x560268049000 ,
3 .length = 8
4 }
5 ibv_send_wr workRequest = {
6 .opcode = IBV_WR_RDMA_READ ,
7 .send_flags = IBV_SEND_SIGNALED ,
8 .sg_list = &local_addr ,
9 .num_sge = 1,

10 .rdma.remote_addr = 0x7ffce0847000
11 };
12 ibv_post_send(queuePair , &workRequest , &error);
13
14 while(ibv_poll_cq (& completionQueue , 1, &workCompletion) == 0)
15 wait ();
16 // *local_addr now contains the data from remote system 's *remote_addr

Write work requests send data to the remote and instruct the remote NIC to write
to a specific memory address. The requests therefore need to specify local
data source and remote destination address. To avoid race conditions, the local
memory should not be modified, while the write request has not been completed.
It can be reused immediately, when the “inline” flag has been set, which sends the
data synchronously. However, this operation is only supported up to an upper limit,
typically 512 Bytes. Otherwise, the same polling for work completions mechanism
as with read requests needs to be used, before the sending memory can be
reused.

8
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TABLE 2.2: Supported work requests per connection [15]

RC UC UD
Send / Recv X X X
Write X X
Read X
Atomic X

Send work requests also send data to the remote, but do not specify the destination
and therefore need to be handled on the receiving side. They only operate with
corresponding receive requests and are described together with them later.

Atomic operations are the most advanced work requests, which support compare-
and-swap and fetch-and-add operations. Those operations behave similar to
the instructions executed on the CPU, thus are effectively a read plus a write.
However, they both require memory fences on the remote end, with a more
involved communication between the remote NIC and main memory subsystem.
Also, both operations only operate on exactly one 64 bit unsigned integer. Those
atomic operations are useful for specific applications, such as network-global
counters, but for most use-cases they require multiple round trips and therefore
are hardly suitable for low latency. Usually, they also decrease network throughput,
since memory fences are rather expensive in comparison to normal read and write
operations.

Receive requests are the only incoming work requests They do not cause any actions
on their own, but act as tokens to be consumed by incoming messages. In the
receive requests, the corresponding memory address for send work requests are
specified, allowing them to be processed.

2.2.2 CONNECTION TYPE

While work requests are used to implement communication, they can only be transmitted
between queue pairs, which can be connected differently. The choice of the actual
connection type, unreliable datagram (UD), unreliable connected (UC), or reliable
connected (RC) might affect the overall performance of the implementation. Another
difference is, that not all connections support all work requests. Supported requests for
each connection type are shown in Table 2.2.

9
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Host

Host

NIC

NIC

Remote

Remote

Send work request

No RECV pending

Error:
IBV_WC_RNR_RETRY_EXEC_ERR

ibv_post_recv()

Send work request

write data

Completion

ibv_poll_cq()

Work completion RECV

FIGURE 2.3: Send and receive requests: An incoming send message needs to be matched with a receive
request, or the transmission will fail.

2.2.3 USAGE

Using work requests has some important pitfalls as displayed in Figure 2.3: Receive
requests actually need to be in the receive queue, before any send can be accepted.
Since the NIC does not buffer any data, each incoming send needs to be matched with a
corresponding receive, otherwise an error message is generated, usually “retry counter
exceeded”.

The receive requests also need to be prepared to store arbitrarily large data. When an
incoming send is bigger than the corresponding receive request, a “local length error”
is generated. A common way to work around this behaviour is to only send fixed size
messages, or limit messages to a maximum size and include the actual message size
in the immediate data field.

When a receive request was consumed, a work completion is generated and placed
in the associated receive completion queue. The receive request behaviour strongly
depends on the incoming message:

• Send work requests only copy the incoming data to the specified memory address.

10
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• For send work requests with immediate data, the generated work completion
additionally contains a valid immediate data field.

• Write work requests with immediate data also consume a receive request, but
do not use the specified memory address. Instead, they only generate a work
completion with an immediate value, which is the only way to receive the immediate
data.

To summarize, setting up memory regions and protection domains is rather expensive
and should only be done once. In contrast, work requests are rather cheap and
can be recreated for each message, but should ideally also be reused when possible.
Communication with multiple peers need a separate queue pairs and completion queues
for each connection. In this case, shared receive queues and completion event channels
are a nice way to process messages with reduced CPU overhead. Their suitability
for low latency application is discussed in Section 3.2. For message types, send and
receive work requests are a nice fit for message oriented communication, but are quite
hard to use reliably. Read and write messages are much easier to use correctly, but
require additional work to operate with message semantics.

11
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USING RDMA EFFICIENTLY

RDMA and its performance implications have already been studied in various papers [8,
13, 15]. However, there still exists non intuitive hardware behaviour and hidden latency
pitfalls. To uncover those, we took a detailed look at the the libibverbs library and
measured the latency behaviour of various primitives. The goal of this chapter is to
understand the RDMA subsystem and how software and hardware play together.

3.1 LIBIBVERBS WITH C++

Libibverbs is a traditional C-style library, while most modern high performance appli-
cations to some degree use C++ and the accompanying paradigms. The C-style API
already caused headaches and several hours of debugging work, because of the com-
pletely manual resource management with interdependent resources (see Section 2.2).

Within the scope of this thesis, we mitigated some of the flaws of libibverbs by designing
and implementing better abstractions for C++ programs. We built libibverbscpp as
an attempt to improve the usability by providing common C++ abstraction on top of
libibverbs, with no computational overhead. The library has been published separately1.

Libibverbs’ design has some major downsides, regarding its object-orientated design.
Although it is quite well designed within the capabilities of C, it still lacks some basic

1 https://github.com/pfent/libibverbscpp

https://github.com/pfent/libibverbscpp
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design principles, like information hiding, encapsulation with separation of concerns,
and type safe polymorphism.

3.1.1 SEPARATION OF CONCERNS

The lack of information hiding is mainly caused by the absence of a concept of private
members in C structs. This results in situations, where the user of the library sees every
implementation detail, which makes it difficult to keep writable and read-only members
apart.

Libibverbscpp tries to improve this situation by providing zero overhead abstractions
over the C-style API. Improvements on the object-oriented design were straight-forward,
since information hiding can easily be done via private members and appropriate setters
and getters. E.g. libibverbs exposes immanent device attributes as writable, although
there is no meaningful way to modify them. By only providing getters for the C++ version,
this immutability can instead be correctly represented by the available operations.

3.1.2 POLYMORPHISM

Furthermore, libibverbs makes heavy use of union polymorphism, e.g. depending on
the operation code of a work request or the type of an event, a different set of union
members are valid. This can easily lead to programming errors with corrupted data
and undefined behaviour, since no errors or warnings are emitted when accessing a
currently invalid part of the union. This makes libibverbs rather confusing, since the
behaviour of various of the approximately 70 global functions changes, depending on
which union members are valid. Which functions are callable in the current context is
not immediately clear.

Similar to visibility restrictions, polymorphism is a common feature of C++ and was
quickly implemented by creating class hierarchies. E.g. the hierarchy displayed in
Figure 3.1 was used for work requests. With this approach, each class can only
selectively offer the methods, which are valid for this specific work request, without the
cognitive overhead of checking the operation code each time. Since this implementation
is static polymorphism, without virtual functions, the performance of this approach is
still exactly the same as directly using libibverbs.
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SendWr Recv

Rdma

Write

WriteWithImm

Send

SendWithImmRead

Atomic

AtomicCompareSwap AtomicFetchAdd

FIGURE 3.1: Libibverbscpp work request specialization hierarchy: While all descendants of SendWr are
based on the same C struct, dedicated subclasses reduce complexity by limiting callable operations.

TABLE 3.1: Manually managed resources in libibverbs

Acquire Release
ibv_alloc_mw() ibv_dealloc_mw()
ibv_alloc_pd() ibv_dealloc_pd()
ibv_create_ah() ibv_destroy_ah()
ibv_create_comp_channel() ibv_destroy_comp_channel()
ibv_create_cq() ibv_destroy_cq()
ibv_create_flow() ibv_destroy_flow()
ibv_create_qp() ibv_destroy_qp()
ibv_create_srq() ibv_destroy_srq()
ibv_open_device() ibv_close_device()
ibv_open_xrcd() ibv_close_xrcd()
ibv_reg_mr() ibv_dereg_mr()

3.1.3 RESOURCE MANAGEMENT

Additionally, in libibverbs all resources are managed completely manual. Many resources
provided by libibverbs need to be cleaned up manually, as outlined in Table 3.1. Since
multiple exit paths for a function are common, resource cleanup is usually handled via
error prone goto fail constructs. In complex applications with long-living resources,
this is not a robust approach to cleanup, especially when using C++, which prominently
features the RAII idiom.

Libibverbs also requires, that resources are released in the inverse order in which
they were acquired. Since this is the natural destruction order of C++ objects, this
allows for natural resource management with C++ unique pointers. The standard
approach would be to implement a wrapper with a custom destructor around the
libibverbs resources, however those cannot be constructed in standard C++, because
their memory is completely managed by libibverbs itself. A more appropriate way to
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implement this, is a subclass with a custom operator delete(), which delegates object
cleanup back to libibverbs. This allows for all resources to be managed in idiomatic C++
RAII style, as shown in the listing below.

LISTING 3.1: Libibverbs compared to libibverbscpp

1 { // Pure libibverbs
2 ibv_context * ctx = ibv_open_device(device );
3 ibv_pd * pd = ibv_alloc_pd(ctx);
4 byte buffer [64];
5 ibv_mr * mr = ibv_reg_mr(pd, &buffer , 64, 0);
6 // don't forget to explicitly call releasing methods!
7 }
8 { // Using our libibverbscpp implementation
9 unique_ptr <Context > ctx = device.open ();

10 unique_ptr <ProtectionDomain > pd = ctx ->allocProtectionDomain ();
11 byte buffer [64];
12 unique_ptr <MemoryRegion > mr = pd->registerMemoryRegion(buffer , 64, {});
13 } // cleanup happens automatically

3.1.4 C++ MANAGEMENT OF C CONSTRUCTS

Because of libibverbs explicit memory management with custom acquisition and re-
leasing functions, only pointers to such objects can exist. Value classes, which call the
appropriate functions in the destructor would be a possibility, but they would require
special care to allow special member functions to work (cf. “Rule of Three” [16]) and
would effectively just duplicate the functionality of a unique_ptr.

Instead, we created pointer only C++ subclasses of the libibverbs C structs. This way,
those resources can seamlessly be used with standard C++ utilities, but also allow
access to the underlying raw structs. I.e. new or unsupported features can still be used
with our classes by casting the objects to their base classes when needed.

LISTING 3.2: Support for raw verbs

1 unique_ptr <QueuePair > qp;
2 Write workrequest;
3 SendWr *bad;
4 // [...]
5 // This might throw an exception
6 qp ->postSend(workrequest , bad);
7 // Legacy calls still work
8 int status = ibv_post_send(qp.get(), &workrequest , (ibv_send_wr **)(& bad));
9 // status != 0 indicates an error

Resource acquisition in libibverbscpp also models the resource hierarchy (Figure 2.1)
much closer, by putting acquisition in the responsibility of parent objects. E.g. a protec-
tion domain (the owner) has a member function to register a memory region associated
with that domain. This also makes it easier to discover which methods can be called
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FIGURE 3.2: Latencies of RDMA verbs according to MacArthur and Russell [13]

with the object at hand, since each object only has a handful of possible methods to call
on, opposed to searching through all verbs, which might take the object as a parameter.
As a result, all classes have deleted constructors, since all resource allocation happens
in the member methods of the object above in the resource hierarchy.

Most of the time, when RDMA verbs return an error, those are fatal, such as calling
functions in the wrong order. As described in Listing 3.2, libibverbscpp throws excep-
tions in such cases, which reduces the complexity of calling functions by defaulting to
propagate fatal errors to the topmost function. This eliminates the potential to swallow
errors in case return values are not explicitly checked and require explicit handling for
silent errors.

3.2 LATENCY

After creating a comfortable API to work with, we could analyze the latency charac-
teristics of RDMA by measuring the performance of different Infiniband verbs. Since
we have a fairly low level API at hand, there are many variables to be adjusted and
different primitives to be used, which all might have implications for low latency operation.
Traditional RDMA optimizations focus more on parallel throughput, than on low latency.
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FIGURE 3.3: Serial throughput of identical messages over all three connection types

Those optimizations might also lead to low latency operation, however which are truly
beneficial is unclear.

MacArthur and Russell [13] showed with Figure 3.2, that “For [. . . ] small messages [. . . ],
much lower one-way time [. . . ] [can be] achieved by using busy polling rather than event
notification”. This implies, that busy polling can achieve almost twice the performance
(half the latency) of event notification. Absolute latencies displayed in this graph are not
applicable to our uses, since the hardware used is quite dated, but relative performance
between event notification and polling should be comparable. Therefore, we discarded
using event notification with completion event channels, since the goal of this thesis is to
explore the lowest possible latencies using RDMA, even when trading CPU usage for it.

Furthermore, those results show, that the usage of inline reduces the latency even more.
Additionally, “performance is much more sensitive to the choice of RDMA options when
using small messages than when using large messages” [13]. For those, the actual
transmission of the data takes up the majority of the time and independent of used
operations. Inline messages also trade CPU resources for lower latency, since the CPU
copies data to the NIC, instead of the NIC reading the message asynchronously.

3.2.1 CONNECTION TYPE

To compare different connection types, we considered an implementation using send
and receive work requests for all three available connection types. E.g. Kalia, Kaminsky,
and Andersen [10] used send work requests with 0 data size, using only the immediate
value to transmit messages of 4 Byte, which is often enough information to call stored
procedures. Since those messages are the only ones usable on all connection types (cf.
Table 2.2), measuring them allows a fair, fundamental comparison of connection types.
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The concrete system used for those experiments is described in detail in Chapter 5.
However, the actual system is not important here, because absolute values have
little meaning for the micro benchmarks presented in this chapter. The importance
of measurements in this chapter only is to compare different approaches in a similar
environment, relative to each other.

When comparing sequential throughput for different connection types in Figure 3.3, UD
messages are slightly slower. Although the performance differences between all three
connection types are only minor. The higher latency of the UD messages is probably
caused by the 40 Byte global routing header (GRH), included in UD messages, to give
the receiver the possibility to identify the origin of the message. Since the messages
are then slightly larger than the other messages, performance is a notch lower.

3.2.2 WORK REQUEST TYPE

Figure 3.4 shows experimental measurements on RC connections of sequential mes-
sages per second, which simply echo the received data (similar to ping). The measure-
ments plotted here are generally symmetrical, e.g. the same operations are used for
both directions. The only exception is the experiment with read work requests, which
first issue a write into remote memory and read that chunk of data back. The read
workload consisted of sending the work request, then either poll memory for the data to
appear or poll the work completion from the completion queue.

All measurements also include subsequent verification of the received data. In contrast
to the other work requests, reads operate without involvement of the remote side. On
the one hand, this is an advantage, since it can reduce resource usage on a server
by efficiently retrieving data. On the other hand, this limits the general applicability,
because transactional workloads might still need to be interactive on the remote.

As the next experiment, send work request with corresponding receives were tested.
This experiment included issuing a send, then the remote side polled its completion
queue, until it completed a receive work request. Afterwards the remote side issued a
send in the opposite direction and in turn, the original sender completed a receive.

Lastly, write work requests were tested in both available flavours, with and without
immediate data. The write with immediate data test case polls for completion of a
receive request for the immediate data, while the work requests without immediate data
simply poll the associated memory location, until the data appears.

From those measurements we can observe immediately, that all experiments depending
on the completion of a receive request have significantly worse performance with higher
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FIGURE 3.4: Serial throughput of messages via different raw work requests

latency. Both send and write with immediate work requests have significantly worse
performance than the competing options.

Read work requests, which poll their work completion have slightly lower throughput
than write work requests, which directly poll the memory location. Compared to polling
work completions, polling the local memory, where the remote data is read into, has
consistently higher throughput and is then very close to memory polling writes. For
messages < 16 Byte, write work requests, combined with polling the incoming memory
are around 3 % faster, while for bigger sizes read work requests win by 6 %. Overall,
with respect to latency both reads and writes have no significant latency differences.

Round-trip times for of messages ≤ 16 Byte can be as low as 1.7 µs, which is roughly the
performance the Infiniband products promise. I.e. Mellanox claims in the product brief of
the used ConnectX-3 NIC: “1us MPI ping latency” [14]. Small latency differences might
be explained by CPU or RAM differences, but this 70 % difference could be caused by a
variety of reasons. Possible explanations might be, that the advertised latency might not
include userspace processing but was only measured NIC to NIC, or that Mellanox used
loopback connections with better latency characteristics.
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3.3 EFFECTIVE INDIRECT WRITES

Direct, continuous writes can achieve excellent latencies, but are very limited. Often
there is a need for an indirection to have more flexibility with write positions. This
concept is similar to the concept of slotted pages [5], which allows flexible tuple storage
in database systems.

The basic concept behind this mechanism is to write the position of the data to one
location and then subsequently write the data to this “pointed to” position. This concept
can also be applied to RDMA operation, so that the sender can choose an arbitrary
address to write to and notify the receiver of the data written. Within the primitives of
libibverbs, write work requests with and without immediate data seem applicable.

Write work requests with immediate appeal, since they can combine a write to
memory with transmitting the position in the immediate data field. The immediate value
is then noticed by the receiver via a receive work request. We initially hypothesized
this would be the fastest way to implement indirect writes, because there is only one
work request to be processed by the NIC. However Section 3.2 showed, that receive
requests have a severe negative impact on the performance, so we compared them to
other implementations.

The competing concept is to use simple write work requests and write the position
in a separate write, effectively doubling the number of work requests to post. The core
implementation can be seen in the following listing.

LISTING 3.3: Indirected write work request

1 auto dataWrite = createWrite(data);
2 auto positionWrite = createWrite(sendPos );
3
4 const auto destination = rand() % size;
5 *sendPos = destination;
6 dataWrite.setRemoteAddress(remoteMr.offset(destination ));
7
8 qp.postWorkRequest(dataWrite );
9 qp.postWorkRequest(positionWrite );

Please note, that the order in which the work requests are posted to the queue pair
is significant. Since write operations can only be used with connected queue pairs
(cf. Table 2.2), the specification guarantees the ordering in which those writes become
visible at the receiving side. Therefore, we can have two variations: Writing the data
first or writing the position first. Data first implies, that all data is written before the
position becomes visible to the CPU. This has the advantage of only needing to poll the
position, without the need to wait until the data write has been completed. On the other
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FIGURE 3.5: The chained work requests on the left can be posted with a single verb, while unchained work
requests on the right require two method calls
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hand, this might introduce additional latency, since this effectively serializes the data
access. Writing the position first allows the CPU to already anticipate the data written
and access it as soon as the NIC finishes writing.

Additionally, a commonly recommended technique for multiple requests is to link them
to a list via the next pointer [1, 22] to get chained work requests, that can be posted
all at once. Since both work requests are always created and posted together, this can
potentially decrease the work the sender needs to do. The alternative are two separate
calls to ibv_post_send(), as displayed in Figure 3.5.

The results of an experiment, which measures round trips by echoing different sized
messaged back to the sender, both times via the write indirection is shown in Figure 3.6.

In this benchmark, we can see, that using two work requests to indirectly write messages
has a similar advantage, as already measured in Section 3.2.2. Using only a single
continuous write would be around 10 % faster for comparable message sizes. Curiously,
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using chained work requests decreases the overall performance by a factor of 2. We
assume chaining work requests actually totally serialize the transmission on the sending
side, where posting two separate work requests enable parallel transmission with serial
consistency at the receiving side.

Which work request is posted first, only has a minuscule impact on the performance.
Since writing the position last allows for easier correctness reasoning and reduced
complexity, this approach should probably be preferred.

3.4 GUIDELINES

From the measurements done in this chapter, we can now deduce some guidelines,
which can be used to implement low latency RDMA messaging.

MacArthur and Russell [13]’s work showed, that INLINE with busy polling promises the
lowest latencies. Additionally, receive operations should be entirely avoided, because
they induce a latency overhead, which more than doubles the total latency. Instead,
writing to a memory location and polling that memory for completion should be preferred.
Unfortunately, this also means that the send and receive combination, which would be
the natural fit for transactional workloads, is out of the question.

Furthermore, unreliable connections do not provide significant enough latency benefits
to justify the risk of packet loss. Any mechanism to compensate that risk is likely to have
more negative impact for latency.

Also from a latency perspective, the advice to chain work requests to reduce overhead
is plain false. It seems the chained work requests are then issued in serial, where
separate requests can be processed in parallel.

Just be aware, that all our measurements were conducted on an unsaturated link.
Maybe in congestion situations, unreliable and send messages are at an advantage,
but for the common and fast case this approach works best.

All in all, simple use cases should use a single continuous write work request. More
complex tasks can be implemented using indirect writes with a slotted-pages-like
approach.
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CHAPTER 4

IMPLEMENTATION

With the knowledge from the observations in Chapter 3, we can now reason about, how
low latency communication over an RDMA network should be implemented for transac-
tions. The main conclusion we can draw, is that memory polling has significant latency
advantages and should therefore be favoured over other notification mechanisms.

4.1 ONE-TO-ONE COMMUNICATION

First, we can take a look at the simplest form of network communication: Point to
point. In this variant, we will only consider an implementation of a single sender and
a single receiver. The use case for this system is a series of messages between two
systems, where an arbitrary amount of messages can be outstanding and messages
can theoretically have unlimited message size.

FIGURE 4.1: Simple setup for bidirectional communication
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4.1.1 RING BUFFER IMPLEMENTATION

Communication between processes using shared memory is usually based around a
ring buffer. When accessing the end of of the buffer, the buffer wraps around to the
beginning, allowing to send an infinite amount of messages in a finite amount of memory,
as long as messages get read fast enough. The ring buffer can contain up to the ring
buffers size of unread messages, so the sender needs to keep track of the last message
read by the receiver, otherwise unread data could be overwritten. In a shared memory
system, this can simply be implemented by atomic counters of bytes read and written.

For an RDMA environment, we can borrow some ideas from this shared memory
communication, with some adaptions. When optimizing RDMA for latency, the utmost
goal is to reduce message round trips by reducing the total amount of individual reads
and writes. This means, more information needs to be tracked implicitly.

Let r be the count of bytes last read by the receiver, s the count of bytes written by
the sender and t the total size of the ring buffer. s − r is then the number of bytes that
should not be overwritten due to potential data loss. However, the sender can still write
t − (s − r) bytes unconditionally. Therefore, it only needs to update the read counter
occasionally, which amortized over the size of the buffer. The overall cost per message
can be estimated by: Messagesize

Buffersize −−−−−−−−→
Buffersize→∞

0

4.1.2 DETECTING NEW MESSAGES

In Section 3.2.2, we saw, that directly polling memory for incoming messages promises
significantly lower latencies than using receive requests. To use memory polling for
general purpose messaging, we can use the fact, that the memory location of the next
incoming write is known and utilize this knowledge by anticipating the write. Suppose the
incoming message writes data 6= 0 to the first and last byte of the message. Furthermore,
we assume the message is written front-to-back, i.e. write monotonicity, like RDMA
guarantees with connected queue pairs. Then, we can detect incoming messages of
constant size by polling the first and last memory location of the message, as shown in
the listing below.

LISTING 4.1: Implementation of memory polling to detect new messages

1 byte buffer[MESSAGE_SIZE ];
2 while(buffer [0] == 0 and buffer[MESSAGE_SIZE - 1] == 0) wait ();
3 // message received
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For this technique to work, the buffer needs to be cleared with zeros after each read of
the message, so that subsequent polling for new messages can rely on a zeroed buffer.
An alternative approach would be to write trailing zeros with each message, which are
overwritten by the next message.

4.1.3 MESSAGE FORMAT

To generalize this method for arbitrary message sizes, the messages we send need to
have a well defined header and footer 6= 0. In our case, we define the header to contain
an 8 Byte size, which defines the length of the following payload. After the payload, the
footer can be arbitrary, but fixed 6= 0. This total message can then be written as a single
continuous write request, which should be optimal for latency.

4.1.4 BOOTSTRAPPING

Setting up an RDMA connection requires connecting the reliable connected queue
pairs and exchanging information about the address and length of the buffer. This
information can be exchanged using a standard TCP connection, since this setup
process is not latency sensitive. Over the TCP connection, both ends first exchange
identifiers necessary to connect the queue pairs: port local identifier (LID) and RDMA
queue pair number (QPN). The next message contains: The address of the buffer, the
corresponding memory region’s RDMA remote key (rKey), the address of the counter
of bytes currently read and this counter’s rKey. With this information, the queue pair
states can be transitioned to RTS (as described in Section 2.2) and messages can be
exchanged.

4.1.5 RESULTS

In Figure 4.2 we compare direct memory access latencies with socket implementations.
In the first graph, our implementations of direct memory access communication are
compared, while the second graph shows both socket based variants. A shared memory
ring buffer (cf. Section 4.1.1) unsurprisingly has the best overall performance. Our
RDMA implementation has significantly worse performance, but considering that it
interconnects two separate computers, is very competitive.

In contrast, Unix domain sockets for local and TCP sockets for remote communication
are an order of magnitude slower than the shared memory approaches. In conclusion,
RDMA can give similar improvements to the use of local shared memory: Using shared

27



CHAPTER 4: IMPLEMENTATION

(~ 2823 − 5 x)
(~ 546 − 1 x)

1000

2000
shared memory
RDMA

(~ 119 − 0.03 x)
(~ 40 − 0.02 x)

50

75

100

125

2 8 16 32 64 128 256

Size of message (Bytes)

   
   

   
   

   
   

   
   

 T
hr

ou
gh

pu
t (

K
 M

sg
 / 

s)

domainsockets
TCP

FIGURE 4.2: Latencies of client to client implementations: Both RDMA and shared memory scale linear
with message size, while the socket based implementations have nearly constant throughput, because
their performance is dominated by overhead.

memory instead of domain sockets gives a 30× speedup, while using RDMA instead of
TCP increases throughput by a factor of 13×.

To also test the scale out performance, Figure 4.3 shows the results of a benchmark with
multiple parallel connections, where 64 Byte messages are echoed between client and
server. In this benchmark, each thread on the server creates its own RDMA resources,
only sharing the physical interface with other threads. The overall throughput increases
up to 20 parallel connections. This correlates with the number of execution contexts
available on the test machine. The throughput for each client is Throughput

Connections , with the
average round trip time (RTT) the inverse of that value. The RTT gradually increases
from 2 µs up to around 2.8 µs, with steep performance drops with more than 20 threads.

4.2 N-TO-ONE COMMUNICATION

Unfortunately, the previous system of one-to-one communication does not scale to many
connected clients. Every connection needs a separate communication channel, where
each channel is polled by a separate thread. This effectively limits the scaling to the
number of execution contexts, in our case 20.

Therefore, we also implemented a system in which one thread can effectively poll
multiple incoming connections, allowing a single thread to serve multiple clients. The
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FIGURE 4.3: Multithread scale-out performance of one-to-one communication: N clients sending 64 Byte
messages to equally many echoing servers

main goal is to enable performance, that is on par with the one-to-one communication
in the fast case, while also effectively handling multiple clients.

For this use case, several assumptions used in the one-to-one case do not hold anymore.
E.g. a unique position for the next incoming message, that can be effectively polled
does not exist anymore. Incoming messages need to be handled via a write indirection
(cf. Section 3.3), while outgoing messages can be handled via a dedicated one-to-one
channel. This is useful, if many clients connect to a single server, but do not completely
saturate their connection, since they only send messages infrequently.

4.2.1 RANDOMIZED WRITES

Our first approach was to issue a single write work request with an immediate value to
indicate the position of the data. This requires a large enough buffer, where writes can
happen at random positions. Since in this configuration, collisions between writes are
unlikely, the common case should be fast.

To estimate how many collisions between messages will occur, we can look at the
likelihood that this will happen. Let m be the message size and b the size of the buffer.
Then, the probability of two messages colliding is p = m(m−1)

b ≈ 2m
b , because only a

single byte in both messages needs to overlap, which effectively doubles the collision
target. Now assume, there are c clients, each sending with a rate of r messages
per second and with a message lingering time t . When each client sends messages
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uniformly distributed every 1
r , then we get a probability of t

1
r

= tr for simultaneous

messages. We then expect to have E = 1− c(1− tl)c−1 messages that can potentially
collide with probability p in each unit of time.

For example, in a setting with 100 clients, each sending 1000, 64 Byte messages per
second, i.e. one every 1 ms with lingering times equal to the latency ≤ 3 µs. With a
server buffer of 128 MByte, we get:

p =
2 · 64

128 · 220 =
1

220

E = 1− 100 · (1− (1 · 3 · 10−3))99

= 1− 100 · 0.99799 ≈ 1− 74.3 ≈ 26

perror =
26
220 = 2.48 · 10−5

Since those probabilities are for each millisecond, the mean time to happen for an error
is approximately:

220

26
ms = 40.33 s

Unfortunately, performance numbers from Figure 3.6 immediately disqualify the usage
of writes with immediate values. Figure 4.4 displays a refined approach using multiple
write requests. In this implementation, there still exists a shared buffer, but instead of
using immediate values, a continuous array of positions is used to indicate the indirect
writes. When a client connects, it gets assigned a position in the buffer of offsets and the
server remembers this association. For the offsets, we used UINT_MAX as the indicator
for no message pending in this slot.
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The server can now effectively poll for incoming messages by periodically scanning the
offsets array for valid offsets. When an incoming message was detected, the position
is reset to no message pending. At the detected offset, the first 8 Byte contain the
message size, and the message from buffer[offset + 8] onwards can be processed.

A major flaw in this implementation still exists, since there can be collisions between
parallel incoming messages. A proposed collision detection mechanism would be to
calculate a checksum over the senders id (to detect identical messages from different
senders) and all of the data. This checksum would be transmitted out of bounds, similarly
to the message position. The receiver can then also calculate the checksum and detect
corrupted messages. When the checksum does not match, a special message is sent
to the initial sender, which triggers a retransmission. Since collisions are unlikely, the
optimal case is still fast, but occasional retransmissions take a bit longer.

For the checksum, we can take a look at CRC32, which has built-in hardware support in
modern processors. Assuming a perfect 32-bit CRC, which only fails to detect 1 in 232

collisions, the mean time of a CRC collision to happen is:

232 · 40.33s = 1.73 · 1011 s ≈ 5489 years

While this is an acceptable rate for 100 000 messages per second, the guarantees might
still be too little when accounting higher scaling systems. A CRC64 checksum should
have sufficient guarantees to detect collisions with a mean time to happen of 1700× the
age of the universe.

4.2.2 MAILBOX FLAGS

The randomized writes approach can transmit arbitrarily large messages, but many
use-cases, especially transaction processing, only need small messages. To make use
of this fact, we limit maximum the message size and give each connection an exclusive
buffer of that size. An effective size for this limitation would be exactly the same as the
limits of IBV_SEND_INLINE. Crossing this limit already has a rather large latency jump
(see Figure 3.2), so we do not induce any additional limitations for latency sensitive
tasks.

Each client has exclusive write access to a buffer, which eliminates the possibility of
message collisions. Additionally, this gives a predictable estimate of memory reserved
for each connection. Since the inline message size is typically limited to a maximum of
512 Byte, memory overhead per connection is rather small. E.g. with a buffer of 1 MByte,
messages of up to 2048 clients could be handled.
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FIGURE 4.5: Visualization of a message sent via an exclusive buffer with mailbox flags

In this concept, messages do not need to be written at random offsets to avoid colli-
sions. This means, each connected client only needs a simple flag to signal incoming
messages, just like a mailbox flag. RDMA supports writing single bytes, so the flags can
be 1 Byte. This also has the advantage, that polling the memory should be faster, since
less memory needs to be scanned for incoming messages.

4.2.3 OPTIMIZATIONS

Additionally, for many connected clients, implementations featuring vectorized instruc-
tions should be at an advantage. In our case, where memory is changed by the NIC,
we need to work with volatile memory, where auto vectorization applied by compilers
is not available. In Figure 4.6 we compare latencies of sending messages over RDMA
while polling a 1 Byte flag in comparison to polling offsets. We also benchmarked three
variations utilizing vector instructions, where the 4 Byte offsets as well as the 1 Byte flags
are polled with SSE _mm_cmpeq_epi32() instructions. The flags can also be polled using
parallel string comparisons with _mm_cmpestri(). Unfortunately, the available hardware
(see Chapter 5) did only support the AVX1 instruction set, which does not support
32 Byte integer operations. This means, only a maximum of 16 Byte could be processed
per instruction.

From those results, we can see, that polling single bytes has a latency advantage of
around 5 %. Vectorization of single byte flags yields an additional, small but consistent
improvement. For 4 Byte offsets, we do not see latency improvements when using
vectorized instructions. This is probably caused by the fact, that with 32 bit values, the
number of memory loads is only reduced by a factor of 4. When loading flags with 16 Byte
in parallel, the number of loads is a bottleneck and the use of vectorized instructions
gives an advantage. Code fragments, which implement those polling experiments can
be found in the Appendix, Listings A.2 to A.8.
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FIGURE 4.6: Comparison of multi client polling mechanisms to detect incoming RDMA messages, which
transmit 64 Byte data

Our final N-to-one implementation uses single byte flags and limits the message size
to 512 Byte. Figure 4.7 shows such a proposed setup, where a central instance can
effectively receive messages, but is limited to receiving small messages. However,
outgoing messages do not have such restrictions and can be larger.

This approach has several drawbacks, which need to be considered when using the
implementation. As previously discussed, we limited the message size to a relatively
small amount. We also do not support multiple outstanding messages, because when a
previous message already occupies the buffer, subsequent messages would overwrite
it. It is therefore necessary, that the sender coordinates and serializes its messages.
Limited outstanding messages can be supported by opening multiple connections, which
then are processed out of order.

Furthermore, the current implementation does not support dynamic client management,
i.e. clients arbitrarily dis- and reconnecting. All session management could be imple-
mented based on TCP socket keep alive mechanisms, which mark specific RDMA queue
pairs as disconnected. These queue pairs then need to be reset, but could be reused
for future clients.

Another potential problem is, that malicious clients could fake messages from other
clients. Libibverbs does not support limiting the memory region to a specific client, but
all registered memory regions are writable by all connected clients within a protection
domain. It is possible to create a separate protection domain for each client in the
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FIGURE 4.7: Use case scenario for N-to-one communication. The central server can only receive small
messages, but send arbitrary sized responses.

one-to-one case, but the N-to-one implementation cannot work this way, since efficient
polling cannot work across multiple memory regions and protection domains. Similar
spoofing attacks exist in traditional networks, where clients can impersonate others by
changing their MAC addresses. In wireless networks with many untrusted devices, this
is problematic, but in small and wired networks with trusted devices, this is a non-issue.

A common performance pitfall when scaling for multiple clients is libibverbs’ handling of
work completion. Usually, for each work request on the server a flag IBV_SEND_SIGNALED

can be set, when a completion is needed. Each work request with this flag set generates
a work completion in the corresponding completion queue. For inline messages, the
server side does not need the information when a work request has been completed.
Therefore, unsignaled requests can be used, which saves time otherwise spent on
processing unnecessary work completion. Due to limitations of libibverbs, this does not
work all the time, since even unsignaled operations use resources in the completion
queue. Thus, too many unsignaled writes might result in a ENOMEM error when posting
work request. As a solution, Xue [22] describes a system of selective signaling, “where
a signaled send is posted once in a while, and then [the] completion event [is polled]
from the CQ”. This process clears the completion queue and allows more work requests
to be posted without an error, while still having little overhead. The implementation of
this optimization for our communication library is shown in the Appendix, Listing A.1.
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FIGURE 4.8: Performance of a single threaded N-to-one server echoing 64 Byte messages

4.2.4 EVALUATION

A benchmark, measuring throughput and mean latency is shown in Figure 4.8. This
system has all the previously discussed optimizations, like selective signaling and
polling incoming messages with SSE in place. In this benchmark, all clients send
64 Byte messages sequentially at the maximum rate. On the server side, a single thread
continuously polls for incoming messages and echos the same 64 Byte message back
to the sender. Each client then verifies the received data and continues to send the next
message.

In result, we can see, that a single server thread can handle up to 4 million incoming
messages per second. Each client can send approximately 500 000 messages per
second with an average latency of around 2.1 µs. With 10 clients, the server starts to
get saturated and latencies start to increase more and more. Already with 14 clients,
the overall throughput goes down and latencies have more than doubled.

4.3 BIG MESSAGES

Since transmitting big messages is not supported by this N-to-one implementation, we
need to consider which restrictions this design decision imposes. When looking at big
messages in general, latency are significantly higher. Optimizing for latency should
therefore first and foremost be a reduction of message sizes.

35



CHAPTER 4: IMPLEMENTATION

Link aggregation, advertised as 4× or 8× does not help for messages latencies, since
each of the links still operates at the same speed. E.g. QDR links have a 10 Gbit/s
signaling rate, which means, that messages of 50 KByte already have serialization times
alone, which are as long as the latencies we get for small messages. Even for way
smaller messages, we see a clear trend: when the data size exceed 128 Byte, we get
diminishing returns for our improved message processing.

Fortunately, small messages are perfectly fine for most transactional workloads. E.g. in
the TPC-C [21] schema, only a single field, (C_DATA) is big enough to maybe exceed
our limitations with a maximum of 500 characters1, while all other fields are an order of
magnitude smaller. Even then, the field is only used in “The Payment Transaction”, while
all other transactions easily fit within the limitations of our implementation.

Nevertheless, bigger messages can still use a fallback method. A good approach would
be, to open a dedicated one-to-one channel, with special messages in the N-to-one
channel to trigger a method switch. Another approach would be to just use regular send
and receive primitives, which have higher latency than a dedicated channel, but do not
need to be set-up before use. The latency differences are not as drastic as for small
messages anyway, because most of the time is spent transmitting the data. Since our
use case did not need such big messages, no fallback path was implemented in this
work.

4.4 ZERO COPY OPERATION

Our C++ implementation enables zero copy operation with higher order functions.
Instead of traditional send(void*, size_t) function prototypes, the send and receive
functions can be passed a callback lambda, which can directly perform computation with
the received data, without the need to copy data. E.g. when a key-value store receives
a request, in the traditional API the requested key is first copied to a specified location
and then used to retrieve the data. With a callback lambda, the copy can be avoided
and the lookup can directly operate on the network buffers within the lambda.

The following code fragment shows an experiment, which sends data to a server and
expects to receive the same data back. Because in this particular experiment, we
already generated the test data outside of the benchmark loop, the zero copy call

1 C_DATA is a VARCHAR(500) field, which only needs to be accessed for 10 % of all rows
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FIGURE 4.9: Impact of zero copy operation on an echoing workload

actually needs to copy the data. However, for the receive call no data needs to be
copied, since we only verify the received data, which can be done in place.

LISTING 4.2: Zero copy enabled ping client

1 client.send ([&]( auto begin) {
2 std::copy(testdata.data(), testdata.data() + size , begin);
3 return size;
4 });
5 client.receive ([&]( auto begin , auto end) {
6 if (not std::equal(begin , end , testdata.data ())) throw runtime_error("NEQ");
7 });

This example shows, that while this technique might not be universally applicable, it
gives more control to the caller, allowing more fine-grained control over which data is
actually copied. Benchmarking this example versus the traditional, copying API shows,
that zero-copy allows for around 5 % (0.1 µs) lower latency, as shown in Figure 4.9. The
difference is relatively small, since the overall work of copying data between buffers only
takes a fraction of the time. For this particular workload, the optimization is easy and
worthwhile. For real applications, results might vary and should definitely be measured,
since the overall impact is largely dependent on the workload.
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CHAPTER 5

EVALUATION

In this chapter, we evaluate our networking library, as described in the previous chapter,
on a database workload. All systems, on which our experiments ran, had identical
hardware. Each machine featured dual Intel Xeon E5-2660 v2 processors at 2.2 GHz,
with 10 cores and 20 hyper-threads, each. Each machine had 256 GByte DDR3 mem-
ory available, running at 1866 MHz. For network communication we used Mellanox
ConnectX-3 VPI NICs, connected via an Infiniband network at 4× QDR with a nominal
data rate of 40 Gbit/s.

The operating systems unfortunately were not identical, since one machine was still
running Ubuntu 16.04.1 LTS, while the other machine was already updated to Ubuntu
17.10. To keep the relevant RDMA software comparable, the software stack was updated
using the rdma-core repository1.

On this platform, we ran experiments to evaluate the transactional performance with a
standardized benchmark and noticed challenges with the dual processor platform.

5.1 YAHOO! CLOUD SERVING BENCHMARK (YCSB)

Cooper et al. [2] created a benchmark for cloud applications with a set of defined
operations on a key-value store, called Yahoo! cloud serving benchmark (YCSB). In this
benchmark, there is only a single table with a 32 bit primary key and records with ten

1 Available online, https://github.com/linux-rdma/rdma-core

https://github.com/linux-rdma/rdma-core
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FIGURE 5.1: YCSB benchmark (8 Byte request, 100 Byte response) over different connections on localhost

100 Byte fields each. Typical workloads read tuples with Zipfian distributed probability to
model real-world data skew [6] and a uniformly distributed random selection of the field.

YCSB is a widely used benchmark for transactional systems, which enables fair com-
parisons between them. To showcase our RDMA library, we implemented a proof
of concept key-value store. This system features an in-memory hash table, based
on libcpp’s unordered_map, which can accept requests via different communication
mechanisms.

Without loss of generality, we selected YCSB workload C, which is a read-only work-
load. However, this is not a limitation of the networking or RDMA component, but a
measure to reduce noise within measurements. Mixed read and write workloads can be
implemented similarly, with additional work, but would need to consider thread safety.

The results of a single threaded benchmark with different communication mechanisms
are displayed in Figure 5.1. These experiments were run on localhost, i.e. via the
loopback interface, to get an upper performance bound for each of the connections.
Please note, that the throughput is plotted on a logarithmic scale, since the performance
differences are rather dramatic. A loopback TCP transaction took on average 15 µs,
the same transaction over domain sockets 8.3 µs, over RDMA 1.4 µs, and with shared
memory communication 0.21 µs. In comparison to that, running the hash table in a loop,
without communication with others only takes 0.057 µs on average.
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TABLE 5.1: Statistics of message response times with different loads (in µs)

Tx / s mean median 99 percentile max
1000000 2.80 2.80 3.29 4.75
2000000 2.79 2.67 3.77 6.96
3000000 2.67 2.51 3.89 8.93
4000000 2.76 2.58 3.97 11.79
5000000 3.30 2.89 11.44 71.13
6000000 4.35 2.59 24.45 9109.43

When running the benchmark via an actual network, in optimal non-uniform memory
access (NUMA) configuration, we can get a performance of around 440 000 sequential
lookups per second, with an average latency of 2.3 µs.

Figure 5.2 displays the latency distribution of requests from multiple clients to a single
threaded YCSB database server. For this benchmark we used different loads on the
database, between 1 and 6 million requests per second. We then measured the
response time for each transaction under that load conditions. To reduce measurement
noise, we averaged the round trip times of 50 consecutive round trips. Afterwards, the
RTTs were rounded to the nearest 1/100 µs with the overall share of each of those
slices plotted on the vertical axis. This graph only shows samples up to 5 µs, which
captures the 99 percentile of most loads. Overload situations have significantly longer
tails, which would render the graph unreadable.

To increase the load on the database, we steadily increase the number of clients, all
sending at constant rates. E.g. to execute 1 M transactions per second, we have 10
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threads, exclusively running on execution contexts, running 100 000 transactions per
second. 2 M were reached with 20 threads, 3 M with 30 and so forth.

Curiously, the average latencies of 1 M transactions per second were actually higher
than with higher loads. This looks like an outlier, but measurements were consistent
over multiple runs. A possible explanation for such behaviour would be power saving
features, which are triggered by rate limiting. When comparing higher loads, we have
much more consistent latencies with typical round trip time of around 2.5 µs. Median
round trip times actually stay approximately the same, while mean, maximum and 99
percentile values increase. An overload of the server starts with around 5 M transactions
per second with significantly higher maximum round trip times.

The overload situation with 6 M transactions per second still has acceptable median
response times, but abysmal maximum response times of over 9 ms. This is probably
caused by the polling mechanism, which always starts by polling the first client. If two
clients simultaneously send a message, the first polled client always wins, which leads
to starvation of later polled clients.

5.2 NUMA IMPACT

The dual CPU architecture of our systems is displayed in Figure 5.3. The two distinct
CPUs are connected via Intel QuickPath interconnect (QPI) [3]. Each CPU comes with its
own memory and I/O subsystem, resulting in a combined system with NUMA. Because
the NIC used to communicate with the Infiniband network is only connected to the
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FIGURE 5.4: Impact of NUMA on RDMA latencies of a key-value database

PCI express bus of one of those CPUs, the network operations also have non-uniform
latencies.

Figure 5.4 visualizes this effect on networking latencies by running a benchmark on
different NUMA nodes (cf. Appendix, Listing A.1). The first column shows the extreme
case, where each network message needs to be written from the CPU via QPI to the
NIC on the sending side. On the receiving side, the NIC also needs to write the received
data through QPI to the destination memory. In total this adds the NUMA latency twice.
The middle columns show the effect of only running one side of the connection on the
higher latency NUMA node. In those measurements, running the receiving side on the
lower latency node has a slight advantage, but those differences are not necessarily
significant.

When running both sides in optimal configuration, we get a performance improvement
of > 40 % in comparison to the worst case. RDMA can be seen as an extreme case of
NUMA, since the difference between local system latency and network latency is only
a factor of 3. Alternatively, as Rödiger et al. [19] put it, NUMA and RDMA can both be
considered networks.

However, accounting for NUMA impact is usually not a big deal. Many systems do not
even have multiple CPU sockets, such that memory access is naturally uniform. A
possible solution, enabling full performance for NUMA systems, would be to use a NIC
for each NUMA node or to simply not use the far node for networking. Therefore, we
performed all experiments on the near to near setup.
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RELATED WORK

This work is not the first to use RDMA for fast networking. Rödiger et al. [19] already
implemented high-speed join processing and query processing using RDMA. In their
system, they built a network aware query processing engine. This query engine tries to
minimize network contention by generating query execution plans with special exchange
operators and coordinated network operation scheduling. By additionally factoring in
NUMA effects, they achieve significant speedups compared to other distributed query
processing engines.

In contrast to our use-case, their system focused on 512 KByte or larger messages. Big
messages hide the latency overhead, so that high throughput with low CPU overhead
becomes the main characteristic of RDMA. In our work, we focused on OLTP workloads,
which has network payloads several orders of magnitude smaller.

In another approach Kalia, Kaminsky, and Andersen [10, 9] implemented a key-value
store, that utilizes RDMA very efficiently for small messages. Their system scales up to
26 million parallelized operations per second, with average latencies of 5 µs as reported
in their first paper and 2.8 µs as reported in their second paper.

They achieve this performance using the basic idea of remote procedure calls (RPC)
using RDMA send and receive messages, instead of directly reading or writing the
desired memory, because network latency is usually the dominating factor for most
OLTP workloads. In combination with techniques of request and response batching,
which reduce NIC to CPU communication, their system excellently scales for parallel
workloads.

Compared to theoretical latencies of ≤ 1 µs, this system seems still not optimal when
focusing on latency. Furthermore, they heavily use RDMA in unreliable datagram (UD)
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mode, which they reason to be reliable, since “packet loss is extremely rare” [9] in RDMA
networks. However, when providing ACID guarantees, there is no slack for eventualities.
Even when “observ[ing] zero packet loss in over 50 PB of data transferred” [9], that does
not mean, catastrophic failure cannot happen any time. In contrast to their work, we
showed, that OLTP systems with even lower latency are possible while still providing a
reliable connection.

An earlier system by Dragojević et al. [4] called FaRM, used a message passing
approach using RDMA writes, similar to ours. Their system also used a ring buffer
and a message detection approach which polled the memory location of the next
message. This message passing system was used for writing transactions, which are
synchronized by the remote CPU with memory barriers. Read operations are entirely
handled by speculative RDMA reads, which might fail if the object was locked by a
writing transaction. In contrast to our system, they built an one-sided system without
interaction of the remote CPU for reading operations. The main advantage is, that the
remote system does not need to interact with requests, but this effectively wastes the
compute power on one system.

While their approach works great to pass individual messages, each access to data
requires multiple network operations. With around 2 µs for network round trips, but
only around 0.1 µs for main memory lookups, the network latencies add up, so that
overall latency is relatively poor. This is an inherent weakness of their multiple round
trip approach, which traverses remote data structures. Any system, which uses an
one-sided approach has the fundamental problem of chaining high latency network
operations. Compared to 31 µs lookup latencies in their system, our single round trip
approach is an order of magnitude faster.

Pilaf [17] implemented a cuckoo hash table with self-verifying entries, using a similar
check summing approach as the proposed system discussed in Section 4.2. Pilaf
clients delegate writes to the server by using RDMA send and receive messages. This
allows for efficiently synchronized writes on the server, with only read-write conflicts
from RDMA. Reads are implemented as RDMA read operations, which might collide
occasionally, but concurrent writes are efficiently detected using CRC64 and the reads
eventually retried. However, the remote traversal of the hash table still causes a huge
increase of lookup latency.

Szepesi et al. [20] proposed Nessie, as a system which not only allows one-sided
reads, but also one-sided writes using RDMA atomic compare-and-swap operations.
As a result, the remote side has no involvement in managing and synchronizing the
underlying hash table anymore. Unfortunately latencies still suffer from the multiple
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FIGURE 6.1: Latency comparison of different RDMA key-value stores, as reported in their publications

round trips approach and are still an order of magnitude worse than using single round
trip approaches.

Figure 6.1 shows a non-representative comparison between the discussed systems.
All values for this graph were taken directly from literature and do not implement the
same benchmarks. Nevertheless, all systems benchmarked similar key value stores.
FaRM used 16 Byte keys with 32 Byte values and achieved latencies of 31 µs. Nessie
reports 25 µs latency for write requests of unspecified sizes. But their work also reports
negligible latency differences for 10 Byte or 1 KByte requests, which is rather surprising,
given that our measurements show a clear correlation between size and round trip
time. Pilaf reports numbers as low as 12 µs for their benchmark of small (16 Byte)
one-sided lookups in their hash table. Herd - as the first system to use both sided
lookups - benchmarked 48 Byte items with a read intensive workload and reached
average latencies of 5 µs. The only competing system reporting their latency of 2.8 µs
on a standardized benchmark (TATP) was FaSST. This benchmark uses a key-value
store with 8 Byte keys to look up 40 Byte values. Our YCSB benchmark had 8 Byte keys
and comparatively large 100 Byte values as described in Section 5.1 with an average
latency of 2.3 µs.
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CONCLUSIONS

Based on our work, we can conclude, that databases can get massive latency im-
provements by using RDMA networking. The major network bottlenecks are already
eliminated when using any RDMA primitives alone. Our optimizations, as presented in
this work, can additionally reduce latencies by almost 50 % for small workloads. With
such dramatic latency improvements of over an order of magnitude in total, transactional
workloads over networks should unconditionally use RDMA.

As Section 4.1 showed, latency bound applications do not saturate the NIC or the
Infiniband network when only using a single thread. Our approach therefore uses a
single threaded server handling multiple connections (Section 4.2), which allows efficient
scaling to many more threads.

All in all, we built a system, which is not limited to transaction processing, but can also
be used for general purpose message passing. While it is optimized for OLTP workloads,
there are actually no conceptual limitations. This allows our system to be adopted by
any application in need for low latency networking.

FUTURE WORK

In future work, it might be possible to adapt techniques that are useful on NVM systems
to RDMA setups. Since RDMA also provides byte addressability, similar systems like the
buffer manager Renen et al. [18] implemented for NVM, can be built using our library.
Such a system would promise to make transactions over the network comparably fast to
in-memory systems.



Another topic for future work might be a system for remote procedure calls (RPCs).
In our current system, we only send messages to the remote side. The messages
themselves need to contain information about initiated actions on the remote side. This
process can be further optimized, e.g. by instead of transmitting message sizes, have
the size implicitly declared as the size of the arguments and only transmit an identifier for
the remote called procedure. In N-to-one communication, there is also the signal byte,
which only has the purpose of a flag. This byte could also be repurposed to encode up
to 255 different procedure calls.

Finally, the RDMA communication should be integrated into a fully featured database
system. Ideally, this database would allow calling stored procedures as RDMA RPC
using messages via our communication library.
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APPENDIX

LISTING A.1: Benchmarking helper script, which uses numactl to pin threads to the near NUMA node, logs
the benchmarking output to a CSV file and displays the data in the terminal.

1 #!/usr/bin/env bash
2 set -e
3 if [[ $# -lt 2 ]]; then
4 echo "Please␣specify␣executable ,␣client␣/␣server ,␣optionally␣IP"
5 exit
6 fi
7 set -x
8
9 NODE=1

10 numactl --membind="$NODE" --cpunodebind="$NODE" ./"$1" "$2" "$3"\
11 | tee "$1"_"$2".csv\
12 | column -s, -t

Polling code used to detect incoming messages:

LISTING A.2: Scalar polling of mailbox flags

1 static size_t poll(char *doorBells , size_t count) noexcept {
2 for (;;) {
3 for (size_t i = 0; i < count; ++i) {
4 if (*( volatile char *)(& doorBells[i]) != '\0') {
5 doorBells[i] = '\0';
6 return i;
7 }
8 }
9 }

10 }
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LISTING A.3: SSE polling of mailbox flags

1 static size_t pollSSE(char *doorBells , size_t count) {
2 assert(count % 16 == 0);
3 const auto zero = _mm_set1_epi8('\0');
4 for (;;) {
5 for (size_t i = 0; i < count; i += 16) {
6 auto data = *( volatile __m128i *)(& doorBells[i]);
7 auto cmp = _mm_cmpeq_epi8(zero , data);
8 uint16_t cmpMask = compl _mm_movemask_epi8(cmp);
9 if (cmpMask != 0) {

10 auto lzcnt = __builtin_clz(cmpMask );
11 auto sender = 32 - (lzcnt + 1) + i;
12 doorBells[sender] = '\0';
13 return sender;
14 }
15 }
16 }
17 }

LISTING A.4: PCMP polling of mailbox flags

1 static size_t pollPCMP(char *doorBells , size_t count) {
2 assert (count % 16 == 0);
3 constexpr auto flags = _SIDD_NEGATIVE_POLARITY;
4 const auto needle = _mm_set1_epi8('\0');
5 for (;;) {
6 for (size_t i = 0; i < count; i += 16) {
7 const auto haystack = *( volatile __m128i *)(& doorBells[i]);
8 const auto match = _mm_cmpestri(needle , 1, haystack , 16, flags);
9 if(match != 16) {

10 const size_t sender = match + i;
11 doorBells[sender] = '\0';
12 return sender;
13 }
14 }
15 }
16 }

LISTING A.5: AVX2 polling of mailbox flags (not benchmarked, due to the lack of hardware support)

1 static size_t pollAVX2(char *doorBells , size_t count) noexcept {
2 assert(count % 32 == 0);
3 const auto zero = _mm256_setzero_si256 ();
4 for (;;) {
5 for (size_t i = 0; i < count; i += 32) {
6 auto data = *( volatile __m256i *)(& doorBells[i]);
7 auto cmp = _mm256_cmpeq_epi8(zero , data);
8 uint32_t cmpMask = compl _mm256_movemask_epi8(cmp);
9 if (cmpMask != 0) {

10 auto lzcnt = __builtin_clz(cmpMask );
11 auto sender = 32 - (lzcnt + 1) + i;
12 doorBells[sender] = '\0';
13 return sender;
14 }
15 }
16 }
17 }
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LISTING A.6: Scalar polling of message offset

1 static std::tuple <size_t , int32_t > poll(int32_t *offsets , size_t count) noexcept {
2 for (;;) {
3 for (size_t i = 0; i < count; ++i) {
4 int32_t writePos = *( volatile int32_t *)(& offsets[i]);
5 if (writePos != -1) {
6 offsets[i] = -1;
7 return {i, writePos };
8 }
9 }

10 }
11 }

LISTING A.7: SSE polling of message offset

1 static std::tuple <size_t , int32_t > pollSSE(int32_t *offsets , size_t count) noexcept {
2 assert(count % 4 == 0);
3 const auto invalid = _mm_set1_epi32 (-1);
4 for (;;) {
5 for (size_t i = 0; i < count; i += 4) {
6 auto data = *( volatile __m128i *)(& offsets[i]);
7 auto cmp = _mm_cmpeq_epi32(invalid , data); // sadly no neq
8 uint16_t cmpMask = compl _mm_movemask_epi8(cmp);
9 if (cmpMask != 0) {

10 auto lzcnt = __builtin_clz(cmpMask );
11 // 4 bits per value , since cmpeq32 , but movemask8
12 auto sender = i + ((32 - lzcnt) / 4 - 1);
13 auto writePos = offsets[sender ];
14 offsets[sender] = -1;
15 return {sender , writePos };
16 }
17 }
18 }
19 }

LISTING A.8: AVX2 polling of message offset (not benchmarked, due to the lack of hardware support)

1 static std::tuple <size_t , int32_t > pollAVX2(int32_t *offsets , size_t count) noexcept {
2 assert(count % 8 == 0);
3 const auto invalid = _mm256_set1_epi32 (-1);
4
5 for (;;) {
6 for (size_t i = 0; i < count; i += 8) {
7 auto data = *( volatile __m256i *)(& offsets[i]);
8 auto cmp = _mm256_cmpeq_epi32(invalid , data);
9 uint32_t cmpMask = compl _mm256_movemask_epi8(cmp);

10 if (cmpMask != 0) {
11 auto lzcnt = __builtin_clz(cmpMask );
12 auto sender = i + ((32 - lzcnt) / 4 - 1);
13 auto writePos = offsets[sender ];
14 offsets[sender] = -1;
15 return {sender , writePos };
16 }
17 }
18 }
19 }

53



CHAPTER A: APPENDIX

LISTING A.9: Selective signaling for faster server side response times

1 auto &con = connections[receiverId ];
2
3 [...] // message preparation omitted for brevity
4
5 if (++ sendCounter % 1024 == 0) { // selectively signaled
6 con.answerWr.setFlags ({Flags::INLINE , Flags:: SIGNALED });
7 con.qp.postWorkRequest(con.answerWr );
8 sharedCq.pollSendCompletionQueueBlocking(Opcode :: RDMA_WRITE );
9 } else {

10 con.answerWr.setFlags ({Flags:: INLINE });
11 con.qp.postWorkRequest(con.answerWr );
12 }
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CHAPTER B

GLOSSARY

DMA Direct Memory Access. Independent and direct access to main memory by
hardware components other than the CPU, usually via PCIe.

IPC Inter-Process Communication. Mechanisms, that an operating system provides
to allow communication between otherwise isolated processes.

LID RDMA Port Local IDentifier. A 16 bit identifier which identifies an RDMA device
within its subnet [15].

NIC Network Interface Card. A hardware component, that connects a computer
with a Network.

NUMA Non-Uniform Memory Access. A processor interconnect, used to combine
processors to a shared memory architecture.

NVM Non-Volatile Memory. A storage technology, which combines the byte address-
ability and low latency of DRAM with persistent storage on power loss.

OLTP OnLine Transaction Processing. A database workload, that consists of small,
mixed reading and writing transactions with high throughput.

QPI Intel QuickPath Interconnect. A processor interconnect, used to combine
processors to a shared memory architecture.

QPN RDMA Queue Pair Number. An identifier for the queue pair registered with an
RDMA device.

RDMA Remote Direct Memory Access. A networking model, that allows direct access
to the memory of another computer.



CHAPTER B: GLOSSARY

rKey RDMA remote key. The remote key of a libibverbs memory region. It is used to
identify the memory region for incoming work requests.

RTT Round Trip Time. The total time elapsed between sending a message and
receiving an answer for that message.

TCP Transmission Control Protocol. Stream-oriented, reliable, transport layer proto-
col.

WC Work Completion. The counterpart of a work request. When the work com-
pletion for a given work request is emitted to a completion queue, the work
request has been processed by the NIC. The work completion is not necessar-
ily positive, but might indicate which error occurred when processing the work
request.

WR Work Request. One of the key components to interact with an RDMA NIC. It is
used to instruct the NIC to asynchronously execute operations.

YCSB Yahoo! Cloud Serving Benchmark. A popular key-value store benchmark
framework with different workloads.
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