Indexes

Storage Hierarchy, ISAM, B-Trees and Hashing

Storage Hierarchy

- Storage hierarchy is important for run-time
 - keep as much as possible in main memory
- Read data from disk:
 - Store things you do not need outside on disk
 - Seek time: time until track is found
 - Latency: Rotation until head starts to write sector
 - Transfer time: time to transfer full sector

Indexes 2

rotation

Hierarchical Indexes: ISAM and B-Trees

- Data transfer can be very time-expensive → keep it as little as possible
- Use index structures: only needed parts are transferred
- ISAM: Index Sequential Access Method
 - Predecessor of B-Trees
 - Main Idea: sort tuples on indexes attribute
 - Similar to thumb index in a book
 - Problem: Maintenance of index is expensive
 - → Index pages for index pages (B-Trees)

B-Tree

Properties

- Balanced and sorted
- Degree i: between i and 2i entries (exception: root)
- Every node with n entries has n+1 children (exception: leaves)

Improvement: B+-Tree: reference keys in inner nodes, data in leaf nodes

→ better run-time

Hashing

- Storing tuples in a defined memory area
- Hash function: mapping tuples to a fixed set of function values
- Optimal hash function: injective and surjective
- Typical hash function h: h (x) = x mod N → set of function values thereby {0,..., N-1}

Hashing – advantages and disadvantages

Advantages	Disadvantages
 Few accesses to external storage Simple implementation 	 Collision handling necessary Pre-allocation of memory area Not dynamic, no range queries

Exam Exercises

• Insert following numbers into an empty B-Tree (degree 2)

7, 21, 5, 3, 17, 90, 4, 34, 24, 32, 13

• What does degree 2 mean for this tree?

Exam Exercises – Solution (1)

Exercise:

Insert 7, 21, 5, 3, 17, 90, 4, 34, 24, 32, 13

1) Insert 7, 21, 5 and 3 in order:

7

7, 21

5, 7, 21

3, 5, 7, 21

2) Insert 17: take median as root

3) Insert 90, 4 and 34

4) Insert 24: take the median to root

5) Insert 32 and 13

Exam Exercises – Solution (2)

Exercise: What does degree 2 mean for this tree?

 B-Tree has at least 2 and at most 2x2 = 4 entries for every node (except the root)