ol s by N =

.......................

Example: Transfer Euro 50 from Ato B

Read balance of A from DB into Variable a:
Subtract 50.- Euro from the balance:

Write new balance back into DB:

Read balance of B from DB into Variable b:
Add 50,- Euro to balance:

Write new balance back into DB:

TR AN
I T\

ANSACTIONS

Definition: Transaction

Sequence of DML/DDL statements

Transforms the data base from one consistent state to
another consistent state

Transactions obey the following four properties

e Atomicity: "All or Nothing"-Property (error isolation)

—> Undo changes if there is a problem
 Consistency: Maintaining DB consistency (defined integrity
constraints)

—> Check integrity constraints at the end of a TA
e Isolation: Execution as if it Is the only transaction in the system

(no impact on other parallel transactions)

—> Synchronize operations of concurrent TAS
e Durability: Holding all committed updates even if the system fails or
restarts (persistency)

—> Redo changes if there is a problem

Types of Failures:
R1-R4 Recovery

1. Abort of a single TA (application, system)
® R1 Recovery: Undo a single TA

2. System crash: lose main memory, keep disk
® R2 Recovery: Redo committed TAs
® R3 Recovery: Undo active TAS

2. System crash with loss of disks

® R4 Recovery:. Read backup of DB from
tape

CIND_DPr
iU/~

Tal Nt
r|||J Nt.

N\
m

System guarantees the ACID properties

—> Task of the application programmer?

Define borders of transactions
e as large as necessary
e as small as possible

Programming with Transactions

begin of transaction (BOT): Starts a new TA
commit: End a TA (success).

Application wants to make all changes durable.

abort: End a TA (failure).

Application wants to undo all changes.

N.B. Many APIs (e.g., JDBC) have an auto-commit option:

Every SQL statement run in its own TA.

SQL Example

Insert into Lectures

values (5275, “Kernphysik~, 3, 2141);
Insert into Professors
values (2141, "Meitner™, FP~, 205);

commit

e-Scheduler
Ty Tz Tz e T
N S B

Scheduler

Data-Manager

Recovery-Manager

Buffer-Manager

Database System Concepts for Non-

8-Jan-18 Computer Scientists WS 2017/2018

Concurrency Anomalies

In multi-user operation following
concurrency anomalies can occur:

Lost Update

Dirty Read
Non-Repeatable Read
Phantom Reads

Anomalies (2)

® g3 =~

Lost Update.:

)]
—
(D
©

T1

T2

read(A, al)

al=al-300

read(A, a2)

a2 =a2*1,03

write(A, al)

read(B, bl)

bl =Dbl+ 300

Ol IN|O|lO]|R]WIN]PEF

write(B, bl)

T1 transfers 300 € from
account Ato B.

T2 credits account A
3% Iinterest.

Interesting steps:
5and 6
update of TA 2
without (again)
reading A overwritten
and thereby lost.

Anomalies (3)

Dirty Read

Step T1 T2

1 read(A, al)

2 al =al - 300

3 write(A, al)

4 read(A, a2)
5 a2=a2*1,03
6 write(A, a2)
7 read(B, bl)

8

9 abort

T1 transfers 300 € from
account Ato B.

T2 credits account A
3% Iinterest.

Interesting steps:
4 and 9

T1is aborted,
but T2 has credited
account A the interest in
steps 5/6 - computed
based on the ,wrong’
value of A.

Anomalies (4)

Non-Repeatabe Read

Step |T1 T2
1 select distinct deptnr
from emp
where salary < 1000
2 update emp
set salary = salary + 10
where deptnr = 2
3 select distinct deptnr
from emp
where salary < 1000

T1 lists (twice) all
department numbers
where there exists an
employee with a salary
less than 1000.

T2 grants salary
increases to all
employees from
department number 2.

The update of T2
might affect the result
of the query in T1.

Anomalies (5)

Phantom Read

Step T1 T2
1 select
sum(balance)
from accounts
2 Insert into
accounts values
(C, 1000)
3 select
sum(balance)

from accounts

T1 reads twice the sum
of all account balances.

T2 Inserts a new
account with a balance
of 1000 €.

T1 computes two
different sums.

Synchronization (1)

Criterion for correctness (goal):
logical single usermode, i.e. avoiding all multi
user anomalies

Formal criterion for correctness :
Serializability:

Parallel execution of a set of transactions iIs
serializable, if there exists one serial execution
of the same set of transactions, yielding the

- same data base state and

- the same results as the original execution

Synchronization (2)

But: Serializability restricts parallel
execution of transactions

=»accepting anomalies enables less
hindrance of transcations
use very carefully!!

How to guarantee serializability?
... via locking
... Vila snapshotting

Locking (1)

example: RX-locking (simple)
two lock modes:

Read (R)-lock
write- or exclusive (X)-lock

compatibility matrix:

none R X
R + +
X e -

"+" means: lock is granted

-" means: lock conflict

Locking (2)

e with lock conflict requesting transaction has to
walt until incompatible lock(s) is (are) removed

 blocking and deadlocks possible
* locks are potentially held until end of transaction

possible optimizations:
 hierarchical locking
e reduced consistency level
e multi version approach

Locking (3)

Incompatibility of a lock request:
- transaction has to wait

Deadlock:

search for deadlocks in periodical time intervals
(adjustable), usually done by cycle detection,
resolved by abort of transaction(s)

Timeout: maximum time for waiting for a lock
(adjustable), abort of transaction when reached

T,=21,>1;>1,>1T;

T, 213 =21 >1T,

® Abort 7, will resolve both cycles

® Alternative: Deadlock detection with timeouts. Pros/cons?

Consistency levels SQL

four Consistency levels (isolation levels)
determined by the anomalies which may occur

Lost Update always avoided: write locks until end
of transaction

Default: Serializable

Dirty Read | Non-Repeatable Read | Phantoms

Read Uncommitted | + + +
Read Committed - + +
Repeatable Read |- - +

Serializable - - -

Consistency levels DB?2

Dirty Read | Non-Repeatable Read | Phantoms

Uncommitted Read (UR) | + + +
Cursor Stability (CS) - + +
Read Stability (RS) - - +

Repeatable Read (RR)

Default: Cursor Stability (CS) (1)

Consistency levels PostgreSQL (1)

Dirty Non-Repeatable Read | Phantoms
Read
Read Uncommitted |+ - + +
Read Committed + +
Repeatable Read A

Serializable

No anomalies # serializable !! (explanation later)

Critique: definition of anomalies stem from a synchronization
method using locking

Multiversion concurrency
control in PostgreSQL (1)

each transaction sees the database in that state it
was when the transaction started

= reads the last committed values that existed at
the time It started

called snapshot isolation

IS a guarantee that all reads made Iin a transaction
will see a consistent snapshot of the database

transaction itself will successfully commit only if no
updates it has made conflict with any concurrent
updates made since that snapshot

-> only write-write conflicts checked before commit

Multiversion concurrency
control In PostgreSQL (2)

such a write-write conflict will cause the
transaction to abort

e snapshot isolation is implemented by
multiversion concurrency control (MVCC)

e advantage: no reader waits for a writer
no writer waits for a reader

e disadvantage: needs more space for new
versions (no update In place)
needs cleaning

- good Iif mainly read transactions

Multiversion concurrency
control in PostgreSQOL (3)

Example: write skew anomaly

T1, T2 start concurrently on the same snapshot
T1 sets V1 to V1 — 200, checks that V1+V2 >=0
T2 sets V2 to V2 — 200, checks that V1+V2 >=0
both finally concurrently commit

none has seen the update performed by the other

-> no serializable schedule
but no non-repeatable read anomaly!

snapshot isolation may lead to
non serializable schedules
- serializable snapshot isolation

